Optimierung - TestAPI
Lokale Extrema von reellen Funktionen
Wir erinnern uns, dass für Funktionen mit einer Veränderlichen eine notwendige Bedingung für lokale Extrema darin besteht, dass die erste Ableitung verschwindet, i.e. durch Lösen der Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle f^\prime\left(x\right)=0}
erhält man mögliche Kandidaten für ein Maximum bzw. ein Minimum einer Funktion.
Beispiel 6: Betrachte das Polynom aus Beispiel 4:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle p(x) = -x^4+x^3+4x^2-4x+2}
Ableitung liefert
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle p^{\prime}(x)=-4 x^3+3 x^2+8 x-4}
Die Suche nach Nullstellen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle p^{\prime}(x)}
liefert potenzielle Kandidaten für lokale Maxima und Minima. Für ein Polynom dritten Grades gibt es geschlossene Formeln, um die Nullstellen zu bestimmen, man erhält näherungsweise
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle x_1 = -1.3263, x_2 = 1.6073, x_3 = 0.4691}
Der Vergleich lässt erkennen, dass an der Stelle das absolute Maximum der Funktion liegt, während es sich bei um ein lokales Minimum und bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\textstyle x_3}
um ein lokales Maximum handelt.
Bereits für eine solch einfache Funktion wie ein Polynom dritten Grades ist die Bestimmung der Nullstellen nicht ganz trivial. Für die meisten Funktionen ist eine explizite Lösung überhaupt nicht möglich, und man ist auf numerische Methoden angewiesen. Die wichtigste wird im folgenden Abschnitt vorgestellt: